215 research outputs found

    Preliminary Study of Prospective ECG-Gated 320-Detector CT Coronary Angiography in Patients with Ventricular Premature Beats

    Get PDF
    BACKGROUND: To study the applicability of prospective ECG-gated 320-detector CT coronary angiography (CTCA) in patients with ventricular premature beats (VPB), and determine the scanning mode that best maximizes image quality and reduces radiation dose. METHODS: 110 patients were divided into a VPB group (60 cases) and a control group (50 cases) using CTCA. All the patients then underwent coronary angiography (CAG) within one month. CAG served as a reference standard through which the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of CTCA in diagnosing significant coronary artery stenosis (luminal stenosis ā‰„50%) could be analyzed. The two radiologists with more than 3 years' experience in cardiac CT each finished the image analysis after consultation. A personalized scanning mode was adopted to compare image quality and radiation dose between the two groups. METHODOLOGY/PRINCIPAL FINDINGS: At the coronary artery segment level, sensitivity, specificity, PPV, and NPV in the premature beat group were 92.55%, 98.21%, 88.51%, and 98.72% respectively. In the control group these values were found to be 95.79%, 98.42%, 90.11%, and 99.28% respectively. Between the two groups, specificity, sensitivity PPV, NPV was no significant difference. The two groups had no significant difference in image quality score (P>0.05). Heart rate (77.20Ā±12.07 bpm) and radiation dose (14.62Ā±1.37 mSv) in the premature beat group were higher than heart rate (58.72Ā±4.73 bpm) and radiation dose (3.08Ā±2.35 mSv) in the control group. In theVPB group, the radiation dose (34.55Ā±7.12 mSv) for S-field scanning was significantly higher than the radiation dose (15.10Ā±1.12 mSv) for M-field scanning. CONCLUSIONS/SIGNIFICANCE: With prospective ECG-gated scanning for VPB, the diagnostic accuracy of coronary artery stenosis is very high. Scanning field adjustment can reduce radiation dose while maintaining good image quality. For patients with slow heart rates and good rhythm, there was no statistically significant difference in image quality

    Coronary artery assessment by multidetector computed tomography in patients with prosthetic heart valves

    Get PDF
    Objectives Patients with prosthetic heart valves may require assessment for coronary artery disease. We assessed whether valve artefacts hamper coronary artery assessment by multidetector CT. Methods ECG-gated or -triggered CT angiograms were selected from our PACS archive based on the presence of prosthetic heart valves. The best systolic and diastolic axial reconstructions were selected for coronary assessment. Each present coronary segment was scored for the presence of valve-related artefacts prohibiting coronary artery assessment. Scoring was performed in consensus by two observers. Results Eighty-two CT angiograms were performed on a 64-slice ( = 27) or 256-slice ( = 55) multidetector CT. Eighty-nine valves and five annuloplasty rings were present. Forty-three out of 1160 (3.7%) present coronary artery segments were non-diagnostic due to valve artefacts (14/82 patients). Valve artefacts were located in right coronary artery (15/43; 35%), left anterior descending artery (2/43; 5%), circumflex artery (14/43; 32%) and marginal obtuse (12/43; 28%) segments. All cobalt-chrome containing valves caused artefacts prohibiting coronary assessment. Biological and titanium-containing valves did not cause artefacts except for three specific valve types. Conclusions Most commonly implanted prosthetic heart valves do not hamper coronary assessment on multidetector CT. Cobalt-chrome containing prosthetic heart valves preclude complete coronary artery assessment because of severe valve artefacts. Key Points Most commonly implanted prosthetic heart valves do not hamper coronary artery assessment Prosthetic heart valve composition determines the occurrence of prosthetic heart valve-related artefacts Bjork-Shiley and Sorin tilting disc valves preclude diagnostic coronary artery segment assessmen

    Diagnostic accuracy of computed tomography coronary angiography in patients with a zero calcium score

    Get PDF
    To evaluate the diagnostic accuracy of 64-slice CT coronary angiography (CT-CA) for the detection of significant coronary artery stenosis in patients with zero on the Agatston Calcium Score (CACS). We enrolled 279 consecutive patients (96 male, mean age 48Ā±12 years) with suspected coronary artery disease. Patients were symptomatic (n=208) or asymptomatic (n=71), and underwent conventional coronary angiography (CAG). For CT-CA we administered an IV bolus of 100 ml of iodinated contrast material. CT-CA was compared to CAG using a threshold for significant stenosis of ā‰¤50%. The prevalence of disease demonstrated at CAG was 15% (1.4% in asymptomatic). The population at CAG showed no or non-significant disease in 85% (238/279), single vessel disease in 9% (25/279), and multi-vessel disease in 6% (16/279). Sensitivity, specificity, and positive and negative predictive values of CT-CA vs. CAG on the patient level were 100%, 95%, 76%, and 100% in the overall population and 100%, 100%, 100%, and 100% in asymptomatic patients, respectively. CT-CA proves high diagnostic performance in patients with or without symptoms and with zero CACS. The prevalence of significant disease detected by CT-CA was not negligible in asymptomatic patients. The role of CT-CA in asymptomatic patients remains uncertain

    Incremental value of the CT coronary calcium score for the prediction of coronary artery disease

    Get PDF
    Objectives:: To validate published prediction models for the presence of obstructive coronary artery disease (CAD) in patients with new onset stable typical or atypical angina pectoris and to assess the incremental value of the CT coronary calcium score (CTCS). Methods:: We searched the literature for clinical prediction rules for the diagnosis of obstructive CAD, defined asā‰„50% stenosis in at least one vessel on conventional coronary angiography. Significant variables were re-analysed in our dataset of 254 patients with logistic regression. CTCS was subsequently included in the models. The area under the receiver operating characteristic curve (AUC) was calculated to assess diagnostic performance. Results:: Re-analysing the variables used by Diamond & Forrester yielded an AUC of 0.798, which increased to 0.890 by adding CTCS. For Pryor, Morise 1994, Morise 1997 and Shaw the AUC increased from 0.838 to 0.901, 0.831 to 0.899, 0.840 to 0.898 and 0.833 to 0.899. CTCS significantly improved model performance in each model. Conclusions:: Validation demonstrated good diagnostic performance across all models. CTCS improves the prediction of the presence of obstructive CAD, independent of clinical predictors, and should be considered in its diagnostic work-up. Ā© 2010 The Author(s)

    Atherosclerotic pattern of coronary myocardial bridging assessed with CT coronary angiography

    Get PDF
    The aim of our study was to evaluate the atherosclerotic pattern of patients with coronary myocardial bridging (MB) by means of CT Coronary Angiography (CT-CA). 254 consecutive patients (166 male, mean age 58.6 Ā± 10.3) who underwent 64-slice CT-CA according to current clinical indications were reviewed for the presence of MB and concomitant segmental atherosclerotic pattern. Coronary plaques were assessed in all patients enrolled. 73 patients (29%) presented single (90%) or multiple (10%) MB, frequently (93%) localized in the mid-distal left anterior descending artery. The MB segment was always free of atherosclerosis. Segments proximal to the MB presented: no atherosclerotic disease (n = 37), positive remodeling (n = 23), 50% stenoses (n = 7). Distal segments presented a different atherosclerosis pattern (P < 0.0001): absence of disease (n = 73), no significant lesions (n = 8). No significant differences were found between segments proximal to MB and proximal coronary segments apart from left main trunk. Pattern of atherosclerotic lesions located in segments 6 and 7 significantly differs between patients with MB and patients without MB (P < 0.05). CT-CA is a reliable method to non-invasively demonstrate MB and related atherosclerotic pattern. CT-CA provides new insight regarding atherosclerosis distribution in segments close to MB

    Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control

    Get PDF
    The aim of this study was to assess the diagnostic accuracy of dual-source computed tomography (DSCT) for evaluation of coronary artery disease (CAD) in a population with extensive coronary calcifications without heart rate control. Thirty patients (24 male, 6 female, mean age 63.1Ā±11.3Ā years) with a high pre-test probability of CAD underwent DSCT coronary angiography and invasive coronary angiography (ICA) within 14Ā±9Ā days. No beta-blockers were administered prior to the scan. Two readers independently assessed image quality of all coronary segments with a diameter ā‰„1.5Ā mm using a four-point score (1: excellent to 4: not assessable) and qualitatively assessed significant stenoses as narrowing of the luminal diameter >50%. Causes of false-positive (FP) and false-negative (FN) ratings were assigned to calcifications or motion artifacts. ICA was considered the standard of reference. Mean body mass index was 28.3Ā±3.9Ā kg/m(2) (range 22.4ā€“36.3Ā kg/m(2)), mean heart rate during CT was 70.3Ā±14.2Ā bpm (range 47ā€“102Ā bpm), and mean Agatston score was 821Ā±904 (range 0ā€“3,110). Image quality was diagnostic (scores 1ā€“3) in 98.6% (414/420) of segments (mean image quality score 1.68Ā±0.75); six segments in three patients were considered not assessable (1.4%). DSCT correctly identified 54 of 56 significant coronary stenoses. Severe calcifications accounted for false ratings in nine segments (eight FP/one FN) and motion artifacts in two segments (one FP/one FN). Overall sensitivity, specificity, positive and negative predictive value for evaluating CAD were 96.4, 97.5, 85.7, and 99.4%, respectively. First experience indicates that DSCT coronary angiography provides high diagnostic accuracy for assessment of CAD in a high pre-test probability population with extensive coronary calcifications and without heart rate control

    Computed tomography segmental calcium score (SCS) to predict stenosis severity of calcified coronary lesions

    Get PDF
    To estimate the probability of ā‰„50Ā % coronary stenoses based on computed tomography (CT) segmental calcium score (SCS) and clinical factors. The Institutional Review Board approved the study. A training sample of 201 patients underwent CT calcium scoring and conventional coronary angiography (CCA). All patients consented to undergo CT before CCA after being informed of the additional radiation dose. SCS and calcification morphology were assessed in individual coronary segments. We explored the predictive value of patientā€™s symptoms, clinical history, SCS and calcification morphology. We developed a prediction model in the training sample based on these variables then tested it in an independent test sample. The odds ratio (OR) for ā‰„50Ā % coronary stenosis was 1.8-fold greater (pĀ =Ā 0.006) in patients with typical chest pain, twofold (pĀ =Ā 0.014) greater in patients with acute coronary syndromes, twofold greater (pĀ <Ā 0.001) in patients with prior myocardial infarction. Spotty calcifications had an OR for ā‰„50Ā % stenosis 2.3-fold (pĀ <Ā 0.001) greater than the absence of calcifications, wide calcifications 2.7-fold (pĀ <Ā 0.001) greater, diffuse calcifications 4.6-fold (pĀ <Ā 0.001) greater. In middle segments, each unit of SCS had an OR 1.2-fold (pĀ <Ā 0.001) greater than in distal segments; in proximal segments the OR was 1.1-fold greater (pĀ =Ā 0.021). The ROC curve area of the prediction model was 0.795 (0.95 confidence interval 0.602ā€“0.843). Validation in a test sample of 201 independent patients showed consistent diagnostic performance. In conjunction with calcification morphology, anatomical location, patientā€™s symptoms and clinical history, SCS can be helpful to estimate the probability of ā‰„50Ā % coronary stenosis
    • ā€¦
    corecore